Role of Regucalcin as an Activator of Ca²⁺-ATPase Activity in Rat Liver Microsomes

Hiroko Takahashi and Masayoshi Yamaguchi*

Laboratory of Endocrinology and Molecular Matabolism, Graduate School of Nutritional Sciences, University of Shizuoka, Shizuoka City 422-8526, Japan

Abstract The effect of Ca²⁺-binding protein regucalcin on Ca²⁺-ATPase activity in isolated rat liver microsomes was investigated. The presence of regucalcin (0.1–1.0 μ M) in the enzyme reaction mixture led to a significant increase in Ca²⁺-ATPase activity. Regucalcin significantly stimulated ATP-dependent ⁴⁵Ca²⁺ uptake by the microsomes. Thapsigargin (10⁻⁶ M), a specific inhibitor of microsomal Ca²⁺ pump enzyme (Ca²⁺-ATPase), clearly inhibited regucalcin (0.5 μ M)-increased microsomal Ca²⁺-ATPase activity. Liver microsomal Ca²⁺-ATPase activity was markedly decreased by N-ethylmaleimide (NEM; 2.5 mM), while the activity was clearly elevated by dithiothreitol (DTT; 2.5 mM), indicating that the sulfhydryl (SH) group of the enzyme is an active site. The effect of regucalcin (0.5 μ M) in increasing Ca²⁺-ATPase activity was completely inhibited by the presence of NEM (2.5 mM) or digitonin (10⁻² %), a solubilizing reagent of membranous lipids. Moreover, the effect of regucalcin on enzyme activity was seen in the presence of Ca²⁺ ionophore (A23187; 10⁻⁷ M). The present study demonstrates that regucalcin can stimulate Ca²⁺ pump activity in rat liver microsomes, and that the protein may act the SH groups of microsomal Ca²⁺-ATPase. J. Cell. Biochem. 74:663–669, 1999. © 1999 Wiley-Liss, Inc.

Key words: regucalcin; Ca²⁺ transport; Ca²⁺-ATPase; liver microsome; rat liver

Calcium ion (Ca²⁺) plays an important role in the regulation of many cell functions. The Ca²⁺ effect in cells is modulated by calmodulin and other Ca²⁺-binding proteins [Cheung, 1980; Bygrave and Benedetti, 1993; Heizmann and Hunziker, 1991]. Regucalcin, a novel Ca²⁺-binding protein that does not contain the EF-hand motif as a Ca²⁺-binding domain [Shimokawa and Yamaguchi, 1993], has been demonstrated to have an inhibitory effect on the activation of various enzymes by Ca²⁺ and calmodulin in liver and kidney cells [Yamaguchi and Tai, 1991; Yamaguchi and Mori, 1990; Kurota and Yamaguchi, 1997]. Regucalcin may play a regulatory role in cell function related to Ca2+ [Yamaguchi, 1992, 1998].

The rat regucalcin gene consists of seven exons and six introns, with several consensus regulatory elements upstream of the 5'-flanking region [Yamaguchi et al., 1996]. The gene is localized on the proximal end of rat chromo-

Received 1 February 1999; Accepted 23 March 1999

some Xq 11.1–12 [Shimokawa et al., 1995]. Expression of hepatic regucalcin mRNA is stimulated by Ca^{2+} signals, which are partly involved in the regulation of functional events in liver cells [Shimokawa and Yamaguchi, 1992]; the expression may be partly mediated through Ca^{2+} /calmodulin [Shimokawa and Yamaguchi, 1993]. Presumably, hepatic regucalcin mRNA expression is stimulated by Ca^{2+} signaling, and regucalcin plays a regulatory role in liver cell functions related to Ca^{2+} . Regucalcin may have a multifunctional role in cells.

Regucalcin has been shown to inhibit activation of the Ca²⁺-dependent enzyme [Yamaguchi, 1992, 1998]. Moreover, regucalcin can stimulate Ca²⁺ pump activity in rat liver plasma membranes [Takahashi and Yamaguchi, 1994, 1997], suggesting that the protein plays a role in the regulation of intracellular Ca²⁺ homeostasis. The role of regucalcin in the control of Ca²⁺ concentration in liver cells, however, has not been fully clarified.

Therefore, the present study was undertaken to clarify the effect of regucalcin on Ca^{2+} -ATPase activity, which is related to ATP-dependent Ca^{2+} uptake by liver microsomes. We found

^{*}Correspondence to: Masayoshi Yamaguchi, Laboratory of Endocrinology and Molecular Metabolism, Graduate School of Nutritional Sciences, University of Shizuoka, 52-1 Yada, Shizuoka City 422-8526, Japan.

regucalcin to have an activatory effect on hepatic microsomal Ca^{2+} -ATPase activity.

MATERIALS AND METHODS Chemicals

Adenosine-5'-triphosphate (ATP), thapsigargin, ionophore A23187, N-ethylmaleimide, dithiothreitol, digitonin, dibutyryl cyclic adenosine-5'-monophosphate (DcAMP), and inositol 1,4,5-trisphosphate (IP₃) were purchased from Sigma Chemical Co. (St. Louis, MO). [⁴⁵Ca] calcium chloride (12.4 GBq/mg) was obtained from New England Nuclear (Boston, MA). Calcium chloride and all other chemicals were reagent grade from Wako Pure Chemical Industries Ltd. (Osaka, Japan). Many reagents used were dissolved in distilled water then passed through an ion-exchange resin to remove metal ions.

Animals

Male Wistar rats, weighing 100–120 g, were used. They were obtained commercially from Japan SLC (Hamamatsu, Japan). The animals were fed commercial laboratory chow (solid) containing 57.5% carbohydrate, 1.1% Ca, and 1.1% P at a room temperature of 25°C, and were allowed distilled water freely.

Isolation of Regucalcin

Regucalcin is markedly expressed in rat liver cytosol [Shimokawa and Yamaguchi, 1993]. Regucalcin was isolated from rat liver cytosol. The livers were perfused with Tris-HCl buffer (pH 7.4), containing 100 mM Tris, 120 mM NaCl, 4 mM KCl, cooled to 4°C). The livers were removed, cut into small pieces, suspended 1:4 (wt/vol) in Tris-HCl buffer (pH 7.4), and homogenized in a Potter-Elvehjem homogenizer with a Teflon pestle. The homogenate was spun at 5,500g in a refrigerated centrifuge for 10 min, and the supernatant was spun at 105,000g for 60 min. The resulting supernatant was heated at 60°C for 10 min and recentrifuged at 38,000g for 20 min. Regucalcin in the supernatant was purified to electrophoretic homogeneity by gel filtration on Sephadex G-75 and G-50, followed by ion-exchange chromatography on diethylaminoethyl (DEAE)-cellulose, as reported previously [Yamaguchi and Yamamoto, 1978].

Preparation of Liver Microsomes

Rats were killed by cardiac puncture, and the liver was perfused with ice-cold 250 mM su-

crose solution, immediately cut into small pieces, suspended 1:9 in the homogenization medium containing 250 mM sucrose, 20 mM 4-(2-hydroxyethyl)-1-piperazineethanesuflonic acid (Hepes), 1.0 mM ethyleneglycol bis(2amino-ethylether)-N,N,N',N',-tetraacetic acid (EGTA), and 1 mM dithiothreitol (DTT), pH 7.2, and homogenized in a Potter-Elvehjem homogenizer with a Teflon pestle [Moore and Kraus-Friedmann, 1983]. The homogenate was centrifuged at 1,000g for 10 min to remove nuclei, unbroken cells, and cell debris. The resultant supernatant was centrifuged at 7,700g for 20 min to remove the mitochondrial fraction. The postmitochondrial supernatant was then centrifuged at 110,000g for 60 min to sediment the microsomal fraction. The microsomal fraction was resuspended in 120 mM KCl, 10 mM Hepes, pH 6.8, to a final protein concentration of 10-15 mg/ml.

Assay of Ca²⁺-ATPase

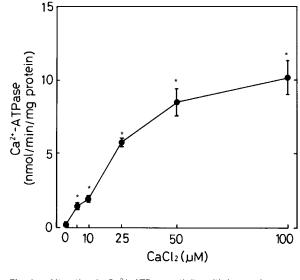
Mg²⁺-ATPase activity was determined for 30 min at 25°C in a medium containing 42.7 mM Hepes-KOH buffer (pH 7.0), 0.1 M KCl, 5 mM MgCl₂, 5 mM NaN₃, 2 mM Tris-ethylene glycol bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA), 5 mM Tris-ATP, and the microsomes (100–150 µg as protein) in the absence or presence of A23187 (1 µM) [Heilmann et al., 1983]. The amount of inorganic phosphate released from ATP. E enzyme reaction was measured according to the method of Nakamura and Mori [1958]. $(Ca^{2+} + Mg^{2+})$ -ATPase activity was measured in the same medium, but with Tris-EGTA replaced by 50 µM CaCl₂. Ca²⁺-ATPase activity was calculated as the difference between (Ca²⁺ + Mg²⁺)-ATPase and Mg²⁺-ATPase. Enzyme activity was expressed as nmol of inorganic phosphate released per min per mg protein. Protein concentration was determined by the method of Lowry et al. [1951].

ATP-Dependent ⁴⁵Ca²⁺ Uptake

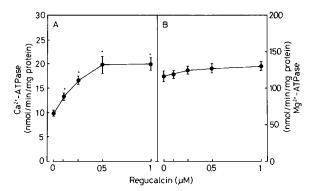
⁴⁵Ca²⁺ uptake was measured by the Millipore filtration technique [Moore and Kraus-Friedmann, 1983]. About 100–150 μg of protein/ml reaction of mixture was incubated for 1 min 37°C in 1 ml of medium containing 100 mM KCl, 20 mM Hepes, 1 mM NaN₃, 1 mM MgCl₂, 1 μM ruthenium red, and 100 μM CaCl₂ containing ⁴⁵Ca²⁺ (0.185 MBq), pH 6.8. At a designated time after the addition of 10 mM adenosine triphosphate (ATP), adjusted to pH 6.8 with KOH, to initiate energy-dependent Ca^{2+} uptake, a 100-µl sample was filtered through a 0.22-µm pre-wetted Millipore filter. The precipitate was washed with 120 mM KCl/100 mM Hepes, pH 6.8, transferred to a scintillation vial and counted for radioactivity. ⁴⁵Ca²⁺ uptake is expressed as nmol of ⁴⁵Ca²⁺ accumulated per mg protein of the microsomes.

Statistical Analysis

Data were expressed as the mean \pm SEM. Statistical differences were analyzed using Student's *t*-test. A *P*-value of 0.05 was considered to indicate a statistically significant difference.


RESULTS

Effect of Regucalcin on Liver Microsomal Ca²⁺-ATPase Activity


The effect of calcium chloride addition on Ca^{2+} -ATPase activity in rat liver microsomes is examined in Figure 1. The addition of calcium chloride (5, 10, 25, 50, and 100 µM) in the enzyme reaction mixture led to a significant increase in Ca^{2+} -ATPase activity; the increase was saturated at 50 µM Ca^{2+} . In the presence of 50 µM $CaCl_2$, the addition of regucalcin (0.1, 0.25, 0.5, and 1.0 µM) produced a significant elevation in Ca^{2+} -ATPase activity. The effect of regucalcin reached to a maximum at the concentration of 0.5 µM (Fig. 2A). Meanwhile, hepatic microsomal Mg²⁺-ATPase activity was not appreciably altered by the addition of regucalcin (0.1–1.0 µM) (Fig. 2B).

Thapsigargin is a specific inhibitor of the microsomal Ca²⁺ pump enzyme (Ca²⁺-ATPase) [Thastrup et al., 1990]. Hepatic microsomal Ca²⁺-ATPase activity was markedly decreased by the addition of thapsigargin (TP) in the enzyme reaction mixture (Fig. 3A). The inhibitory effect of TP was saturated at 10⁻⁶ M. The effect of regucalcin (0.5 μ M) in increasing Ca²⁺-ATPase activity was not significantly seen in the presence of TP (10⁻⁶ M) (Fig. 3B), indicating that regucalcin acts Ca²⁺ pump enzyme (Ca²⁺-ATPase) in the microsomes.

The effect of regucalcin on ATP-dependent ${}^{45}Ca^{2+}$ uptake by liver microsomes is shown in Figure 4. The addition of ATP to the reaction mixture containing ${}^{45}Ca^{2+}$ led to microsomal ${}^{45}Ca^{2+}$ uptake (Fig. 4A). This uptake was significantly increased by the presence of regucalcin (0.5 µM) (Fig. 4A). A significant increase in microsomal ${}^{45}Ca^{2+}$ uptake by regucalcin was

Fig. 1. Alteration in Ca²⁺-ATPase activity with increasing concentrations of Ca²⁺ addition in rat liver microsomes. CaCl₂ was added to the enzyme reaction mixture, yielding concentrations of 5, 10, 25, 50, and 100 μ M. Each value is the mean ±SEM of five experiments with separate rats. **P* < 0.01, as compared with the control value without Ca²⁺ addition.

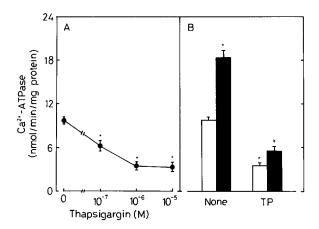
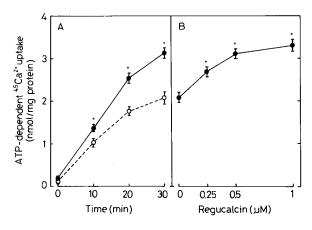


Fig. 2. Effect of regucalcin on Ca²⁺-ATPase and Mg²⁺-ATPase activities in rat liver microsomes. Regucalcin was added to the enzyme reaction mixture, yielding concentrations of 0.1, 0.25, 0.5, and 1.0 μ M in the presence **(A)** or absence **(B)** of 50 μ M Ca²⁺. Each value is the mean \pm SEM of five experiments with separate rats. **P* < 0.01, as compared with the control value without regucalcin addition.


seen at 0.25 μ M, and it was saturated at 1.0 μ M (Fig. 4B). Thus, regucalcin had an activatory effect on liver microsomal Ca²⁺ pump.

Characterization of Regucalcin Action on Liver Microsomal Ca²⁺-ATPase Activity

The effect of regucalcin on liver microsomal Ca^{2+} -ATPase activity in the presence of Ca^{2+} ionophore (A23187) is shown in Table I. The presence of A23187 (10⁻⁷ M) in the enzyme reaction mixture did not cause a significant

Fig. 3. Effect of thapsigarin, an inhibitor of microsomal Ca²⁺-ATPase, on regucalcin-increased Ca²⁺-ATPase activity in rat liver microsomes. **A:** Thapsigargin (TP) was added to the enzyme reaction mixture, yielding concentrations of 10^{-7} - 10^{-5} M. **B:** The enzyme reaction mixture contained either vehicle or regucalcin (0.5 µM) in the absence or presence of TP (10^{-5} M). Each value is the mean ±SEM of five experiments with separate rats. **P* < 0.01, as compared with the control (none) value; #*P* < 0.01, as compared with the value of regucalcin alone. □, control; **■**, regucalcin.

Fig. 4. Effect of regucalcin on ATP-dependent ${}^{45}Ca^{2+}$ uptake in rat liver microsomes. ${}^{45}Ca^{2+}$ uptake was measured as described in the experimental section. **A**: The microsomes were incubated for 10, 20, and 30 min after the addition of ATP in the absence or presence of regucalcin (0.5 μ M). **B**: The microsomes were incubated for 30 min after the addition of ATP in the absence or presence of regucalcin (0.25, 0.5, and 1.0 μ M). Each value is the mean ±SEM of five experiments with separate rats. O, control; **●**, regucalcin.

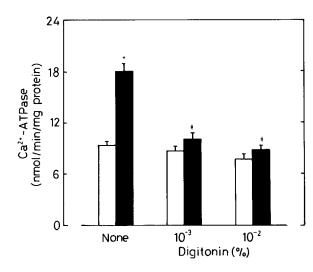
decrease in Ca²⁺-ATPase activity, although (Ca²⁺ + Mg²⁺)-ATPase and Mg²⁺-ATPase activity was reduced by the addition of A23187. The effect of RC (0.5 μ M) in increasing Ca²⁺-ATPase activity was also seen in the presence of A23187 (10⁻⁷ M). The effect of regucalcin was not dependent on Ca²⁺.

TABLE I. Effect of Regucalcin on Liver
Microsomal Ca ²⁺ -ATPase Activity in the
Presence of Ca²⁺ Ionophore ^a

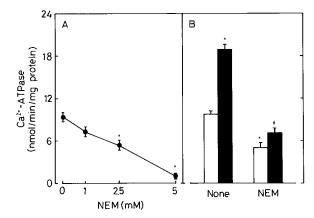
	*		
	Enzyme activity (nmol/min/mg protein)		
	$(Ca^{2+} + Mg^{2+})$ -	Mg^{2+} -	Ca ²⁺ -
Treatment	ATPase	ATPase	ATPase
Control	119.9 ± 1.9	115.1 ± 7.0	$\textbf{8.8} \pm \textbf{0.8}$
A23187	$101.7\pm1.3^*$	$94.3\pm3.0^*$	7.4 ± 0.7
Regucalcin	$130.2\pm3.8^*$	$113.0\pm2.3^*$	$18.8 \pm 1.8^*$
A23187 +			
regucalcin	$102.0\pm4.1^*$	$\textbf{86.3} \pm \textbf{7.2*}$	$15.7\pm2.0^*$

^aThe enzyme reaction mixture contained either vehicle or regucalin (0.5 μ M) in the absence or presence of A23187 (10⁻⁷ M). Each value is the mean \pm SEM of five experiments of separate rats.

*P < 0.01, as compared with the control value.


The effect of digitonin on regucalcin-increased Ca²⁺-ATPase activity in hepatic microsomes is shown in Figure 5. Digitonin has a solubilization effect on membranous lipids [Murphy et al., 1980]. The presence of digitonin (10^{-3} and 10^{-2} %) in the enzyme reaction mixture did not have a significant effect on microsomal Ca²⁺-ATPase activity. In the presence of digitonin, however, regucalcin (0.5 µM) could not increase Ca²⁺-ATPase activity.

The effect of N-ethylmaleimide (NEM), a modifying reagent of sulfhydryl (SH) groups, on regucalcin-increased Ca²⁺-ATPase activity in liver microsomes is shown in Figure 6. The presence of NEM (2.5 and 5.0 mM) in the enzyme reaction mixture caused a remarkable decrease in Ca²⁺-ATPase activity (Fig. 6A). In the presence of NEM (2.5 mM), the effect of regucalcin (0.5 μ M) in increasing Ca²⁺-ATPase activity was not seen (Fig. 6B).


Liver microsomal Ca²⁺-ATPase activity was markedly elevated by the presence of dithiothreitol (DTT), a protecting reagent of SH groups, in the enzyme reaction mixture (Fig. 7A). The effect of regucalcin (0.5 μ M) or enzyme activity was not further enhanced in the presence of DTT (2.5 mM) (Fig. 7B).

Effect of Signaling Factors on Regucalcin-Increased Liver Microsomal Ca²⁺-ATPase Activity

The effect of dibutyryl cAMP (DcAMP) on Ca^{2+} -ATPase activity in rat liver microsomes is shown in Figure 8. Microsomal Ca^{2+} -AMPase activity was significantly increased by the presence of DcAMP (10^{-6} to 10^{-4} M) in the enzyme

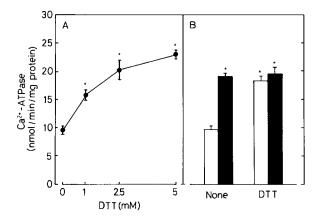

Fig. 5. Effect of digitonin on regucalcin-increased Ca²⁺-ATPase activity in rat liver microsomes. The enzyme reaction mixture contained either vehicle or digitonin (10⁻³ or 10⁻² %) in the absence or presence of regucalcin (0.5 μ M). Each value is the mean ±SEM of five experiments with separate rats. **P* < 0.01, as compared with the control (none) value; #*P* < 0.01, as compared with the value of regucalcin alone. \Box , control; \blacksquare , regucalcin.


Fig. 6. Effect of N-ethylmaleimide (NEM) on regucalcinincreased Ca²⁺-ATPase activity in rat liver microsomes. **A:** NEM was added to the enzyme reaction mixture, yielding concentrations of 1.0, 2.5, and 5.0 mM. **B:** The enzyme reaction mixture contained either vehicle or NEM (2.5 mM) in the absence or presence of regucalcin (0.5 μ M). Each value is the mean ±SEM of five experiments with separate rats. **P* < 0.01, as compared with the control (none) value; #*P* < 0.01, as compared with the value of regucalcin alone. \Box , control; **■**, regucalcin.

reaction mixture (Fig. 8A). This increase was not significantly enhanced by the presence of regucalcin (0.5 μ M) (Fig. 8B).

The presence of inositol 1,4,5-trisphosphate (IP₃; 10^{-7} to 10^{-5} M) in the enzyme reaction mixture caused a significant increase in liver microsomal Ca²⁺-ATPase activity (Fig. 9A). The effect of regucalcin (0.5 µM) in increasing Ca²⁺-

Fig. 7. Effect of dithiothreitol (DTT) on regucalcin-increased Ca²⁺-ATPase activity in rat liver microsomes. **A:** DTT was added to the enzyme reaction mixture, yielding concentrations of 1.0, 2.5, and 5.0 mM. **B:** The enzyme reaction mixture contained either vehicle or DTT (2.5 mM) in the absence or presence of regucalcin (0.5 μ M). Each value is the mean ±SEM of five experiments with separate rats. **P* < 0.01, as compared with the control (none) value. \Box , control; **■**, regucalcin.

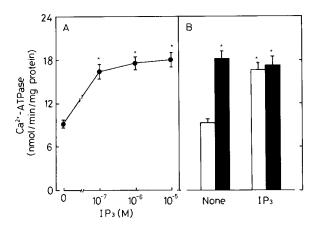


Fig. 8. Effect of dibutyryl cyclic adenosine monophosphate (DcAMP) on regucalcin-increased Ca²⁺-ATPase activity in rat liver microsomes. **A:** DcAMP was added to the enzyme reaction mixture, yielding concentrations of $10^{-6}-10^{-4}$ M. **B:** The enzyme reaction mixture contained either vehicle or DcAMP (10^{-6} M) in the absence or presence of regucalcin (0.5 µM). Each value is the mean ±SEM of five experiments with separate rats. **P* < 0.01, as compared with the control (none) value. □, control; **■**, regucalcin.

ATPase activity was not significantly altered by the presence of IP_3 (10⁻⁶ M) (Fig. 9B).

DISCUSSION

Regucalcin has been shown to activate Ca^{2+} pump enzyme (Ca^{2+} -ATPase) in isolated rat liver plasma membranes [Takahashi and Yamaguchi, 1994, 1997], suggesting that the protein plays a role in the regulation of intracellular Ca^{2+} homeostasis. Furthermore, the pres-

Fig. 9. Effect of inositol 1,4,5-trisphosphate (IP₃) on regucalcinincreased Ca²⁺-ATPase activity in rat liver microsomes. **A:** IP₃ was added to the enzyme reaction mixture, yielding concentrations of 10^{-7} - 10^{-5} M. **B:** The enzyme reaction mixture contained either vehicle or IP₃ (10^{-7} M) in the absence or presence of regucalcin (0.5 µM). Each value is the mean ±SEM of five experiments with separate rats. **P* < 0.01, as compared with the control (none) value. \Box , control; **■**, regucalcin.

ent study was undertaken to clarify the effect of regucalcin on Ca^{2+} pump activity in isolated rat liver microsomes. Hepatic microsomal Ca^{2+} sequestration is involved in Ca^{2+} -ATPase [Heilmann et al., 1983; Kraus-Friedmann, 1990]. Regucalcin has been found to increase Ca^{2+} -ATPase activity and ATP-dependent Ca^{2+} uptake in hepatic microsomes.

The effect of regucalcin in increasing liver microsomal Ca²⁺-ATPase activity was not seen in the presence of digitonin, a solubilization reagent of membranous lipids [Murphy et al., 1980], in the enzyme reaction mixture. This result suggests that regucalcin acts on Ca²⁺-ATPase by its binding on the microsomal membranous lipids. Moreover, regucalcin-increased microsomal Ca²⁺-ATPase activity was completely inhibited by the presence of NEM, a modifying reagent of SH groups, while the effect of regucalcin was not further enhanced by the addition of DTT, a protecting reagent of SH groups. It has been reported that liver microsomal Ca²⁺ sequestration is critically dependent on the SH groups of protein, and that modification of protein thiols may be an important mechanism for the inhibition of microsomal Ca²⁺ sequestration by a variety of toxic agents [Thor et al., 1985]. On the basis of our results, it is assumed that regucalcin acts on the SH groups, which may be an active site of Ca²⁺-ATPase in hepatic microsomes.

 Ca^{2+} ionophore (A23187) can stimulate release of Ca^{2+} from liver microsomes [Kraus-

Friedmann, 1990]. Whether the effect of regucalcin on liver microsomal Ca^{2+} -ATPase activity is involved in the microsomal Ca^{2+} was examined. Regucalcin was able to increase hepatic microsomal Ca^{2+} -ATPase activity in the presence of Ca^{2+} ionophore (A23187), suggesting that regucalcin activates the enzyme independent on Ca^{2+} , which is related to the microsomal Ca^{2+} transport. Presumably, regucalcin binds to the microsomal membranes and directly activates Ca^{2+} -ATPase by acting on the SH groups.

Cyclic adenosine monophosphate (cAMP) and inositol 1,4,5-trisphosphate (IP₃) are intracellular signaling factors [Joseph and Williamson, 1989; Rasmussen, 1970]. It is known that cAMP and IP₃ can stimulate Ca²⁺ release from liver microsomes [Staddon and Hansford, 1989; Kraus-Friedmann, 1990; Joseph and Williamson, 1989]. Whether the effect of regucalcin on Ca²⁺-ATPase activity in liver microsomes is involved in the action of cAMP or IP₃ was examined. The presence of dibutyryl cAMP (DcAMP) or IP₃ in the enzyme reaction mixture caused a significant increase in liver microsomal Ca²⁺-ATPase activity. These results suggest the possibility that cAMP or IP₃ can stimulate ATPdependent Ca²⁺ uptake. Meanwhile, regucalcinincreased liver microsomal Ca2+-ATPase activity was not significantly enhanced by the presence of DcAMP or IP₃. Regucalcin largely exists in the cytoplasm of liver cells [Yamaguchi and Isogai, 1993]. Liver cytoplasm regucalcin concentration is estimated at about 5 µM. Intracellular cAMP and IP₃, which are generated by hormonal stimulation, may not have physiological significance for Ca²⁺ sequestration system in liver cells in which regucalcin is largely present.

An activator of liver microsomal Ca^{2+} -ATPase is not fully known [Kraus-Friedmann, 1990]. Yet the endoplasmic reticulum contains calmodulin and the Ca^{2+} sequestration process does respond to calmodulin [Kraus-Friedmann et al., 1988; Fomulshi and Carafoli, 1984]. It is also possible that the role of calmodulin in the endoplasmic reticulum is more related to Ca^{2+} release than to uptake, as has been suggested in the sarcoplasmic reticulum [Smith et al., 1989]. Presumably, regucalcin is unique as an activator of Ca^{2+} -ATPase in rat liver microsomes.

Regucalcin has been demonstrated to stimulate Ca²⁺ pump activity in rat liver plasma membranes [Takahashi and Yamaguchi, 1994, 1997]. In addition, the present study finds that regucalcin has an activatory effect on ATP-dependent Ca^{2+} uptake in the endoplasmic reticulum of liver cells. Thus, regucalcin may play an important role in the regulation of Ca^{2+} concentration in the cytoplasm of liver cells.

REFERENCES

- Bygrave FL, Benedetti A. 1993. Calcium: its modulation in liver by crosstalk between the actions of glucagon and calcium-mobilizing agents. Biochem J 296:1–14.
- Cheung WY. 1980. Calmodulin plays a pivotal role in cellular regulation. Science 202:19–27.
- Fomulski KS, Carafoli E. 1984. Calmodulin-dependent phosphorylation and calcium uptake in rat liver microsomes. Eur J Biochem 141:15–20.
- Heilmann C, Spamer C, Gerok W. 1983. The phosphoprotein intermediate of a Ca²⁺ transport ATPase in rat liver endoplasmic reticulum. Biochem Biophys Res Commun 114:584–292.
- Heizmann CW, Hunziker W. 1991. Intracellular calciumbinding proteins: more sites than in sights. Trends Biochem Sci 16:98–103.
- Joseph SK, Williamson JR. 1989. Inositol polyphosphates and intracellular calcium release. Arch Biochem Biophys 273:1–15.
- Kraus-Friedmann N. 1990. Calcium sequestration in the liver. Cell Calcium 11:625–640.
- Kraus-Friedmann N, Freschner CD, Zimmiak P, Moore P. 1988. The hepatic microsomal Ca²⁺ sequestering system. In: Preiffer DR, McMillin JB, Little S, editors. Advances in experimental medicine biology. Vol 1232: Cellular Ca²⁺ regulation. New York: Plenum Press. p 59–68.
- Kurota H, Yamaguchi M. 1997. Inhibitory effect of regucalcin on Ca²⁺/calmodulin-dependent protein kinase activity in rat renal cortex cytosol. Mol Cell Biochem 177:239– 243.
- Lowry OH, Rosebrough NH, Farr AL, Randdall RJ. 1951. Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–273.
- Moore PB, Kraus-Friedmann N. 1983. Hepatic microsomal Ca²⁺-dependent ATPase. Calmodulin-dependence and partial purification. Biochem J 214:69–75.
- Murphy EK, Coll TL, Rich TL, Williamson JR. 1980. Hormonal effect on calcium homeostasis in isolated hepatocytes. J Biol Chem 255:6600–6608.
- Nakamura M, Mori K. 1958. Colorimetric determination of inorganic phosphorus in the presence of glucose-1phosphate and adenosine triphosphate. Nature 182:1441– 1442.
- Rasmussen J. 1970. Cell communication, calcium ion, and cyclic adenosine monophosphate. Science 170:404–412.
- Shimokawa N, Yamaguchi M. 1992. Calcium administration stimulates the expression of calcium-binding protein regucalcin mRNA in rat liver. FEBS Lett 305:151–154.

- Shimokawa N, Yamaguchi M. 1993. Molecular cloning and sequencing of the cDNA coding for a calcium-binding protein regucalcin from rat liver. FEBS Lett 327:251– 255.
- Shimokawa N, Matsuda Y, Yamaguchi M. 1995. Genomic cloning and chromosomal assignment of rat regucalcin gene. Mol Cell Biochem 151:157–163.
- Smith JS, Roussean E, Meissner G. 1989. Calmodulin modulation of signal sarcoplasmic reticulum Ca^{2+} release channels from cardiac and skeletal muscle. Circ Res 64:352–359.
- Staddon JM, Hansford RG. 1989. Evidence indicating that the glucagon-induced increase in cytoplasmic free Ca²⁺ concentration in hepatocytes is mediated by an increase in cyclic-AMP concentration. Eur J Biochem 179:47–52.
- Takahashi H, Yamaguchi M. 1994. Activating effect of regucalcin on (Ca²⁺-Mg²⁺)-ATPase in rat liver plasma membranes: relation to sulfhydryl group. Mol Cell Biochem 136:71–76.
- Takahashi H, Yamaguchi M. 1997. Stimulatory effect of regucalcin on ATP-dependent calcium transport in rat liver plasma membranes. Mol Cell Biochem 168:149– 153.
- Thastrup O, Culler PJ, Drbbak BK, Hanley MR, Dawson AP. 1990. Thapsigargin, a tumor promoter, discharges intracellular Ca²⁺ stores by specific inhibition of the endoplasmic reticulum Ca²⁺-ATPase. Proc Natl Acad Sci USA 87:2466–2470.
- Thor H, Hartzell P, Svensson S-A, Orrenius S, Mirabelli F, Marinoni V, Bellomo G. 1985. On the role of thiol groups in the inhibition of liver microsomal Ca²⁺ sequestration by toxic agents. Biochem Pharmacol 34:3717–3723.
- Yamaguchi M. 1992. A novel Ca²⁺-binding protein regucalcin and calcium inhibition: regulatory role in liver cell function. Tokyo: Japan Sci Society Press/Boca Raton, FL: CRC Press. p 19–41.
- Yamaguchi M. 1998. Role of calcium-binding protein regucalcin in regenerating rat liver. J Gastroen Hepatol 13: S106–112.
- Yamaguchi M, Isogai M. 1993. Tissue concentration of calcium-binding protein regucalcin in rats by enzymelinked immunoadosorbent assay. Mol Cell Biochem 122: 65–68.
- Yamaguchi M, Mori S. 1990. Inhibitory effect of calciumbinding protein regucalcin on protein kinase C activity in rat liver cytosol. Biochem Med Metab Biol 43:140–146.
- Yamaguchi M, Tai H. 1991. Inhibitory effect of calciumbinding protein regucalcin on Ca²⁺/calmodulin-dependent cyclic nucleotide phosphodiesterase activity in rat liver cytosol. Mol Cell Biochem 106:25–30.
- Yamaguchi M, Yamamoto T. 1978. Purification of calciumbinding substance from soluble fraction of normal rat liver. Chem Pharm Bull 26:1915–1918.
- Yamaguchi M, Makino R, Shimokawa N. 1996. The 5' end sequences and exon organization in rat regucalcin gene. Mol Cell Biochem 165:145–150.